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• Motivation 

• Real World Clock Sources, Hardware and Applications 

• Clock Synchronization in Distributed Systems 

• Theory of Clock Synchronization 

• Protocol: PulseSync 
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Motivation 

• LogiĐal Tiŵe ;͞happeŶed-ďefore͟Ϳ 
• Determine the order of events in a distributed system 

• Synchronize resources 

 

• Physical Time 

• Timestamp events (email, sensor data, file access times etc.) 

• Synchronize audio and video streams 

• Measure signal propagation delays (Localization) 

• Wireless (TDMA, duty cycling) 

• Digital control systems (ESP, airplane autopilot etc.) 
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Properties of Clock Synchronization Algorithms 

• External vs. internal synchronization 

– External sync: Nodes synchronize with an external clock source (UTC) 

– Internal sync: Nodes synchronize to a common time 

– to a leader, to an averaged time, ... 

 

• One-shot vs. continuous synchronization 

– Periodic synchronization required to compensate clock drift 

 

• Online vs. offline time information 

– Offline: Can reconstruct time of an event when needed 

 

• Global vs. local synchronization (explained later) 

 

• AĐĐuraĐǇ ǀs. ĐoŶǀergeŶĐe tiŵe, BǇzaŶtiŶe Ŷodes, … 
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World Time (UTC) 

• Atomic Clock 

– UTC: Coordinated Universal Time 

– SI definition 1s := 9192631770 oscillation cycles of the caesium-133 atom 

– Atoms are excited to oscillate at their resonance frequency and cycles can 

be counted. 

– Almost no drift (about 1s in 10 Million years) 

– Getting smaller and more energy efficient! 
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Atomic Clocks vs. Length of a Day 
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Access to UTC 

 

• Radio Clock Signal 

– Clock signal from a reference source 

(atomic clock) is transmitted over a 

long wave radio signal  

– DCF77 station near Frankfurt, 

Germany transmits at 77.5 kHz with a 

transmission range of up to 2000 km 

– Accuracy limited by the propagation 

delay of the signal, Frankfurt-Zurich is 

about 1ms 

– Special antenna/receiver hardware 

required 
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What is UTC, really? 

 

• International Atomic Time (TAI) 

– About 200 atomic clocks 

– About 50 national laboratories 

– Reduce clock skew by comparing and averaging 

– UTC = TAI + UTC leap seconds (irregular rotation of earth) 

 

• GPS 

– USNO Time 

– USNO vs. TAI difference 

is a few nanoseconds 
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Comparing (and Averaging) 

Station A Station B �Δ஺ = �஺ − ሺ�ௌ�+݀஺ሻ �Δ஻ = �஻ − ሺ�ௌ�+݀஻ሻ 

݀஻ ݀஺ 

�Δ = �Δ஻ − �Δ஺ = �஻ − �ௌ� + ݀஻ − �஺ + �ௌ� + ݀஺ = �஻ − �஺ + ݀஺ − ݀஻ 
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Global Positioning System (GPS) 

 

• Satellites continuously transmit own position and time code 

• Line of sight between satellite and receiver required 

• Special antenna/receiver hardware required 

• Time of flight of GPS signals varies between 64 and 89ms 

• Positioning in space and time!  

 

• Which is more accurate, 

GPS or Radio Clock Signal? 
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GPS Localization 

 

Assuming that time of 

GPS satellites is correctly 

synchronized…  
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 �૚ − �ܿ = � − �ଵ �૛ − �ܿ = � + �ଵଶ − �ଶ �૜ − �ܿ = � + �ଵଷ − �ଷ ⋮ ⋮ �� − �ܿ = � + �ଵ� − �� 

 ܿ = speed of light 

Find least squares solution in � and �  

�૝ 

GPS Localization 
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Keeping GPS Satellites synchronized 
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Alternative (Silly) Clock Sources 

 

• AC power lines 

– Use the magnetic field radiating from electric AC power lines 

– AC power line oscillations are extremely stable  

(drift about 10 ppm, ppm = parts per million) 

– Power efficient, consumes only 58 μW 

– Single communication round required to correct 

phase offset after initialization 

 

• Sunlight 

– Using a light sensor to measure the length of a day 

– Offline algorithm for reconstructing global  

timestamps by correlating annual solar patterns  

(no communication required) 
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Clock Devices in Computers 

 

• Real Time Clock (IBM PC) 

• Battery backed up 

• 32.768 kHz oscillator + Counter 

• Get value via interrupt system 

 

 

• HPET (High Precision Event Timer) 

• Oscillator: 10 Mhz … ϭϬϬ Mhz 

• Up to 10 ns resolution! 

• Schedule threads 

• Smooth media playback 

• Usually inside Southbridge 
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Clock Drift 

 

• Clock drift: random deviation from the nominal rate dependent on power supply, 

temperature, etc. 

 

 

 

 

• E.g. TinyNodes have a maximum drift of 30-50 ppm (parts per million) 

 

 

 

 

 
 

 

 

 

This is a drift of up to 

50μs per second  

or 0.18s per hour 

t 

rate 

1 
1+² 

1-² 
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Clock Synchronization in Computer Networks 

 

• Network Time Protocol (NTP) 

• Clock sync via Internet/Network (UDP) 

• Publicly available NTP Servers (UTC) 

• You can also run your own server! 

 

 

 

 

 

 

 

 

• Packet delay is estimated to reduce clock skew 
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Propagation Delay Estimation (NTP) 

• Measuring the Round-Trip Time (RTT) 

 

 

 

 

 

• Propagation delay ߜ and clock skew Θ can be calculated 

B 

A 
Time accor- 

ding to A 

Request  

from A  

Answer  

from B  

Time accor- 

ding to B 

ߜ = �ସ − �ଵ − ሺ�ଷ − �ଶሻʹ  
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Reception Callback 

 

 Problem: Jitter in the message delay 

Various sources of errors (deterministic and non-deterministic) 

 

 

 

 

 

 

 

 Solution: Timestamping packets at the MAC layer 

→ Jitter iŶ the ŵessage delaǇ is reduĐed to a feǁ ĐloĐk tiĐks 

 

Messages Experience Jitter in the Delay 

0-100 ms 0-500 ms 1-10 ms 

0-100 ms 

t 

SendCmd Access Transmission 
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Jitter Measurements 

 

• Different radio chips use different paradigms 

– Left is a CC1000 radio chip which generates an interrupt with each byte. 

– Right is a CC2420 radio chip that generates a single interrupt for the packet 

after the start frame delimiter is received. 

 

 

 

 

• In wireless networks propagation 

can be ignored (<1¹s for 300m). 

 

• Still there is quite some variance 

in transmission delay because of 

latencies in interrupt handling  

(picture right). 
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• Precision Time Protocol (PTP) is very similar to NTP 

 

• Commodity network adapters/routers/switches can assist in time sync by  

timestamping PTP packets at the MAC layer 

 

• Packet delay is only estimated on request 

 

• Synchronization through one packet from server to clients! 

 

• Some newer hardware (1G Intel cards, 82580) can timestamp any packet 

at the MAC layer 

 

• Achieving skew of about 1 microsecond 

Clock Synchronization in Computer Networks (PTP) 
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• Synchronous digital circuits require all components to act in sync 

 

 

 

 

 

 

 

 

 

• The bigger the clock skew, the longer the clock period 

• The clock signal that governs this rhythm needs to be distributed to all 

components such that skew and wire length is minimized 

• Optimize routing, insert buffers (also to improve signal) 

 

 

 

Hardware Clock Distribution 
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• Reference Broadcast Synchronization (RBS)  

Synchronizing atomic clocks 

• Sender synchronizes  set of clocks 

 

 

 

 

• Time-sync Protocol for Sensor Networks (TPSN)  

Network Time Protocol  

• Estimating round trip time to sync more accurately 

 

 

 

• Flooding Time Synchronization Protocol 

(FTSP)Precision Time Protocol 

• Timestamp packets at the MAC Layer to improve 

accuracy 

Clock Synchronization Tricks in Wireless Networks 
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Best tree for tree-based clock synchronization? 

 

• Finding a good tree for clock synchronization is a tough problem 

– Spanning tree with small (maximum or average) stretch. 

 

• Example: Grid network, with n = m2 nodes. 

 

• No matter what tree you use, the maximum 

stretch of the spanning tree will always be 

at least m (just try on the grid). 

 

• In general, finding the minimum max 

stretch spanning tree is a hard problem,  

however approximation algorithms exist. 

1 2 3 4 5 

6 7 8 9 10 

11 12 13 14 15 

16 17 18 19 20 

21 22 23 24 25 
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 Synchronize with all neighboring 

nodes 

• Broadcast periodic time beacons, 

e.g., every 30 s 

• No reference node necessary 

 

 How to synchronize clocks without 

having a leader? 

• Follow the node with the 

fastest/slowest clock? 

• Idea: Go to the average clock 

value/rate of all neighbors (including 

node itself) 
 

 

 

 

 

Clock Synchronization Tricks (GTSP) 

4 

6 

1 

2 3 

5 

7 

0 

5/28 

Variants of Clock Synchronization Algorithms 

 

  Tree-like Algorithms  Distributed Algorithms 

  e.g. FTSP   e.g. GTSP 

 

 

 

 

 

 

 

 

 

 
Bad local 
skew 

All nodes consistently average 
errors to all neigbhors 
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FTSP vs. GTSP: Global Skew 

 

• Network synchronization error (global skew) 

– Pair-wise synchronization error between any two nodes in the network 

 

FTSP (avg: 7.7 μs) GTSP (avg: 14.0 μs) 
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FTSP vs. GTSP: Local Skew 

 

• Neighbor Synchronization error (local skew) 

– Pair-wise synchronization error between neighboring nodes 

 

• Synchronization error between two direct neighbors: 

 

FTSP (avg: 15.0 μs) GTSP (avg: 2.8 μs) 
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Global vs. Local Time Synchronization 

 

• Common time is essential for many applications: 

– Assigning a timestamp to a globally sensed event (e.g. earthquake) 

 

– Precise event localization (e.g. shooter detection, multiplayer games) 

 

– TDMA-based MAC layer in wireless networks 

 

 

 

– Coordination of wake-up and sleeping times (energy efficiency) 
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• Given a communication network 

1. Each node equipped with hardware clock with drift 

2. Message delays with jitter 

 

 

 

 

 

 

 

 

• Goal: “ǇŶĐhroŶize CloĐks ;͞LogiĐal CloĐks͟Ϳ 
• Both global and local synchronization! 

 

Theory of Clock Synchronization 

worst-case (but constant) 
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• Time (logical clocks) should not be allowed to stand still or jump 

 

 

 

 

 

 

 

•     Let͛s ďe ŵore Đareful ;aŶd aŵďitiousͿ: 
•     Logical clocks should always move forward  

• Sometimes faster, sometimes slower is OK.  

• But there should be a minimum and a maximum speed. 

• As close to correct time as possible! 

Time Must Behave! 
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Formal Model 

 

• Hardware clock Hv(t) = s[0,t] hv(¿) d¿  

with clock rate hv(t) 2 [1-²,1+²] 

 

• Logical clock Lv(∙) which increases  

at rate at least 1 and at most ¯ 

 

• Message delays 2 [0,1] 

 

• Employ a synchronization algorithm  

to update the logical clock according  

to hardware clock and  

messages from   

neighbors 

 

 

Clock drift ² is typically small, e.g.  

² ¼10-4 for a cheap quartz oscillator 

Neglect fixed share of delay, 

normalize jitter 

Logical clocks with rate less than 1 

ďehaǀe differeŶtlǇ ;͞sǇŶĐhroŶizer͟Ϳ 

Time is 140 Time is 150 

Time is 152 

Lv? 

Hv 
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Synchronization Algorithŵs: AŶ Eǆaŵple ;͞Amax͟Ϳ 

 

• Question: How to update the logical clock  

based on the messages from the neighbors?  

• Idea: Minimizing the skew to the fastest neighbor 

– Set the clock to the maximum clock value received from any neighbor 

(if larger than local clock value) 

– forward new values immediately 

• Optimum global skew of about D 

• Poor local property 

– First all ŵessages take ϭ tiŵe uŶit… 

– …theŶ ǁe haǀe a fast ŵessage! 

 

 

 

Time is D+x Time is D+x 

… 

Clock value: 

D+x 

Old clock value: 

D+x-1 
Old clock value: 

x+1 

Old clock value: 

x 

Time is D+x 

New time is D+x 
New time is D+x skew D! 

Allow ¯ = 1 

Fastest 

Hardware 

Clock 
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Synchronization Algorithms: Amax’ 

 

• The problem of Amax is that the clock is always increased to the maximum 

value 

• Idea: Allow a constant slack γ between the maximum neighbor clock value 

and the own clock value 

• The algorithm Amax’ sets the local clock value Li(t) to �௜ � ≔ max⁡ሺ�௜ � ,max௝∈���௝ � −  ⁡ሻߛ
 

→ Worst-case clock skew between two neighboring nodes is still Θ;DͿ 
independent of the choice of γ! 
 

• How can we do better? 

– Adjust logical clock speeds to catch up with fastest node (i.e. no jump)? 

– Idea: Take the clock of all neighbors into account by choosing the average 

value? 
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Local Skew: Overview of Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

1  logD  √D  D … 

        

EǀerǇďodǇ͚s expectation, 
five years ago ;„solved͞Ϳ 

Lower bound of logD / loglogD 

[Fan & Lynch, PODC 2004] 

All natural algorithms  
[Locher et al., DISC 2006] 

Blocking 
algorithm 

Kappa algorithm 
[Lenzen et al., FOCS 2008] 

Tight lower bound 
[Lenzen et al., PODC 2009] 

Dynamic Networks! 
[Kuhn et al., SPAA 2009] 
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Enforcing Clock Skew 

 

 

 

 

 

 

 

 

 

• Messages between two neighboring nodes may be fast in one direction 

and slow in the other, or vice versa. 

 

• A constant skew between neighbors may be „hiddeŶ͞. 

 

• In a path, the global skew may be in the order of D/2. 

 

2 3 4 5 6 7 
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5/39 

Local Skew: Lower Bound 

Theorem: (logβ−భ � D) skew between neighbors 

• Add 
�బ ଶ  skew in 

�బ ଶ� ⁡time, messing with clock rates and messages 

• Afterwards: Continue execution for 
�బ ସሺ�−ଵሻ ⁡⁡time (all ℎ௫ = ͳ) 

 Skew reduces by at most 
�బ ସ   at least 

�బ ସ  skew remains 

 Consider a subpath of length �ଵ = �଴ ⋅ � ଶ �−ଵ ⁡with at least 
�భ ସ  skew 

 Add 
�భ ଶ  skew in 

�భ ଶ� = �బ ସሺ�−ଵሻ  time  at least ଷ ସ ⋅ �ଵ⁡skew in subpath 

• Repeat this trick (+½,-¼,+½,-¼,…Ϳ logమሺβ−భሻ � D times 

Higher 

clock 

rates 

�଴ = � 

ℎ௩ = ͳ 

ℎ௪ = ͳ �௪ሺ�ሻ 

�௩ሺ�ሻ=x 

ℎ௪ = ͳ �௪ሺ�ሻ 

�௩ � = � + �଴ ʹ  ℎ௩ = ͳ + � 
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Local Skew: Upper Bound 

 

• Surprisingly, up to small constants, the (log(¯-1)/² D) lower bound can be 

matched with clock rates 2 [1,¯] (tough part, not included) 

• We get the following picture [Lenzen et al., PODC 2009]: 

 

 

 

 

 

 

 

 

• In practice, we usually have 1/² ¼ 104 > D. In other words, our initial  

intuition of a constant local skew was not entirely wrong!  

 

max rate ¯ 1+² 1+£(²) ϭ+√² 2 large 

local skew 1 £(log D) £(log1/² D) £(log1/² D) £(log1/² D) 

... because too large 
clock rates will amplify 

the clock drift ².  

We can have both 
smooth and accurate 

clocks! 
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 Sending periodic beacon messages to synchronize nodes 

 

Back to Practice: Synchronizing Nodes 

J 

t=100 t=130 

Beacon interval B 

1 

0 

J 

reference clock   t 

t 

100 130 

jitter jitter 
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 Message delay jitter affects clock synchronization quality 

How accurately can we synchronize two nodes? 

y(x) = r∙ǆ + ∆Ǉ  

clock offset 

^ 

relative clock rate 

(estimated) 

0 

1 

x 

y 

J J ∆Ǉ 

Beacon interval B 

r ̂ 

r 
r ̂ 
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 Lower Bound on the clock skew between two neighbors 

 

Clock Skew between two Nodes 

Error in the rate estimation: 

 Jitter in the message delay 

 Beacon interval 

 Number of beacons k 

 

 

 

 

Synchronization error: 

0 

1 

x 

y 

J J ∆Ǉ 

Beacon interval B 

r ̂ 

r 
r ̂ 
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 Nodes forward their current estimate of the reference clock 

Each synchronization beacon is affected by a random jitter J 

 

 

 

 

 Sum of the jitter grows with the square-root of the distance 

 stddev(J1 + J2 + J3 + J4 + J5 + ... Jd) = √d×stddev(J)  

 

 

 

 

 

 

 

Multi-hop Clock Synchronization 

J1 J2 J3 

0 1 2 3 4 ... 

J4 J5 

d 

Single-hop: Multi-hop: 

Jd 
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 FTSP uses linear regression to compensate for clock drift 

Jitter is amplified before it is sent to the next hop 

 

Linear Regression (e.g. FTSP) 

0 

1 

x 

y 

r 

J J 

∆Ǉ 

Beacon interval B 

Example for k=2 

^ 

r 

synchronization error 

y(x) = r∙ǆ + ∆Ǉ  

clock offset 

^ 

relative clock rate 

(estimated) 
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The PulseSync Protocol 

• Send fast synchronization pulses through the network 

  Speed-up the initialization phase 

  Faster adaptation to changes in temperature or network topology 

Beacon time B 

t 

0 

1 

2 

3 

4 

t 

0 

1 

2 

3 

4 

FTSP 

PulseSync 

Expected time 

= D·B/2 

Expected time 

= D·tpulse 

tpulse 

Beacon time B 
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The PulseSync Protocol (2) 

• Remove self-amplification of synchronization error 

  Fast flooding cannot completely eliminate amplification 

 

synchronization error 

^ 

The green line is calculated using   

k measurement points that are 

statistically independent of the red line. 

0 

1 

x 

y 

r 

J J 

∆Ǉ 

Beacon interval B 

Example for k=2 

^ 

r 

y(x) = r∙ǆ + ∆Ǉ  

clock offset 

relative clock rate 

(estimated) 
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FTSP vs. PulseSync 

• Global Clock Skew 

•  Maximum synchronization error between any two nodes 

Synchronization Error FTSP PulseSync 

Average (t>2000s) 23.96 µs 4.44 µs 

Maximum (t>2000s) 249 µs 38 µs 

FTSP PulseSync 
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FTSP vs. PulseSync 

 

• Sychnronization Error vs. distance from root node 

FTSP PulseSync 
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Roger Wattenhofer 

 

That’s all! 
Questions & Comments? 

 

 

 

 


