
5/1 ETH Zurich – Distributed Computing – www.disco.ethz.ch

Roger Wattenhofer

Clock Synchronization
Part 2, Chapter 5

5/2

 Clock Synchronization

5/3

 Clock Synchronization

5/4

• Motivation

• Real World Clock Sources, Hardware and Applications

• Clock Synchronization in Distributed Systems

• Theory of Clock Synchronization

• Protocol: PulseSync

Overview

5/5

Motivation

• LogiĐal Tiŵe ;͞happeŶed-ďefore͟Ϳ
• Determine the order of events in a distributed system

• Synchronize resources

• Physical Time

• Timestamp events (email, sensor data, file access times etc.)

• Synchronize audio and video streams

• Measure signal propagation delays (Localization)

• Wireless (TDMA, duty cycling)

• Digital control systems (ESP, airplane autopilot etc.)

5/6

Properties of Clock Synchronization Algorithms

• External vs. internal synchronization

– External sync: Nodes synchronize with an external clock source (UTC)

– Internal sync: Nodes synchronize to a common time

– to a leader, to an averaged time, ...

• One-shot vs. continuous synchronization

– Periodic synchronization required to compensate clock drift

• Online vs. offline time information

– Offline: Can reconstruct time of an event when needed

• Global vs. local synchronization (explained later)

• AĐĐuraĐǇ ǀs. ĐoŶǀergeŶĐe tiŵe, BǇzaŶtiŶe Ŷodes, …

5/7

World Time (UTC)

• Atomic Clock

– UTC: Coordinated Universal Time

– SI definition 1s := 9192631770 oscillation cycles of the caesium-133 atom

– Atoms are excited to oscillate at their resonance frequency and cycles can

be counted.

– Almost no drift (about 1s in 10 Million years)

– Getting smaller and more energy efficient!

5/8

Atomic Clocks vs. Length of a Day

5/9

Access to UTC

• Radio Clock Signal

– Clock signal from a reference source

(atomic clock) is transmitted over a

long wave radio signal

– DCF77 station near Frankfurt,

Germany transmits at 77.5 kHz with a

transmission range of up to 2000 km

– Accuracy limited by the propagation

delay of the signal, Frankfurt-Zurich is

about 1ms

– Special antenna/receiver hardware

required

5/10

What is UTC, really?

• International Atomic Time (TAI)

– About 200 atomic clocks

– About 50 national laboratories

– Reduce clock skew by comparing and averaging

– UTC = TAI + UTC leap seconds (irregular rotation of earth)

• GPS

– USNO Time

– USNO vs. TAI difference

is a few nanoseconds

5/11

Comparing (and Averaging)

Station A Station B �Δ஺ = �஺ − ሺ�ௌ�+݀஺ሻ �Δ஻ = �஻ − ሺ�ௌ�+݀஻ሻ

݀஻ ݀஺

�Δ = �Δ஻ − �Δ஺ = �஻ − �ௌ� + ݀஻ − �஺ + �ௌ� + ݀஺ = �஻ − �஺ + ݀஺ − ݀஻

5/12

Global Positioning System (GPS)

• Satellites continuously transmit own position and time code

• Line of sight between satellite and receiver required

• Special antenna/receiver hardware required

• Time of flight of GPS signals varies between 64 and 89ms

• Positioning in space and time!

• Which is more accurate,

GPS or Radio Clock Signal?

5/13

GPS Localization

Assuming that time of

GPS satellites is correctly

synchronized…

�ଶ �ௌ� �ଵ �ସ �ଷ �ଵ �ଶ �ଷ �ସ

�ଵଶ �ଵଷ �ଵସ

�ோ

� − �ଵ

� − �ଵ

� + �ଵଶ − �ଶ

� + �ଵଷ − �ଷ
� + �ଵସ − tସ

�૚

�૝ �૜

�૛

�, �

5/14

 �૚ − �ܿ = � − �ଵ �૛ − �ܿ = � + �ଵଶ − �ଶ �૜ − �ܿ = � + �ଵଷ − �ଷ ⋮ ⋮ �� − �ܿ = � + �ଵ� − ��

 ܿ = speed of light

Find least squares solution in � and �

�૝

GPS Localization

� − �ଵ

� + �ଵଶ − �ଶ

� + �ଵଷ − �ଷ
� + �ଵସ − tସ

�૚

�૜

�૛

�, �

5/15

Keeping GPS Satellites synchronized

5/16

Alternative (Silly) Clock Sources

• AC power lines

– Use the magnetic field radiating from electric AC power lines

– AC power line oscillations are extremely stable

(drift about 10 ppm, ppm = parts per million)

– Power efficient, consumes only 58 μW

– Single communication round required to correct

phase offset after initialization

• Sunlight

– Using a light sensor to measure the length of a day

– Offline algorithm for reconstructing global

timestamps by correlating annual solar patterns

(no communication required)

5/17

Clock Devices in Computers

• Real Time Clock (IBM PC)

• Battery backed up

• 32.768 kHz oscillator + Counter

• Get value via interrupt system

• HPET (High Precision Event Timer)

• Oscillator: 10 Mhz … ϭϬϬ Mhz

• Up to 10 ns resolution!

• Schedule threads

• Smooth media playback

• Usually inside Southbridge

5/18

Clock Drift

• Clock drift: random deviation from the nominal rate dependent on power supply,

temperature, etc.

• E.g. TinyNodes have a maximum drift of 30-50 ppm (parts per million)

This is a drift of up to

50μs per second

or 0.18s per hour

t

rate

1
1+²

1-²

5/19

Clock Synchronization in Computer Networks

• Network Time Protocol (NTP)

• Clock sync via Internet/Network (UDP)

• Publicly available NTP Servers (UTC)

• You can also run your own server!

• Packet delay is estimated to reduce clock skew

5/20

Propagation Delay Estimation (NTP)

• Measuring the Round-Trip Time (RTT)

• Propagation delay ߜ and clock skew Θ can be calculated

B

A
Time accor-

ding to A

Request

from A

Answer

from B

Time accor-

ding to B

ߜ = �ସ − �ଵ − ሺ�ଷ − �ଶሻʹ

Θ = �ଶ − ሺ�ଵ + ሻߜ − ሺ�ସ − ሺ�ଷ + ʹሻሻߜ = �ଶ − �ଵ + ሺ�ଷ − �ସሻʹ

�ଶ

�ଵ �ସ

�ଷ

5/21

Reception Callback

 Problem: Jitter in the message delay

Various sources of errors (deterministic and non-deterministic)

 Solution: Timestamping packets at the MAC layer

→ Jitter iŶ the ŵessage delaǇ is reduĐed to a feǁ ĐloĐk tiĐks

Messages Experience Jitter in the Delay

0-100 ms 0-500 ms 1-10 ms

0-100 ms

t

SendCmd Access Transmission

5/22

Jitter Measurements

• Different radio chips use different paradigms

– Left is a CC1000 radio chip which generates an interrupt with each byte.

– Right is a CC2420 radio chip that generates a single interrupt for the packet

after the start frame delimiter is received.

• In wireless networks propagation

can be ignored (<1¹s for 300m).

• Still there is quite some variance

in transmission delay because of

latencies in interrupt handling

(picture right).

5/23

• Precision Time Protocol (PTP) is very similar to NTP

• Commodity network adapters/routers/switches can assist in time sync by

timestamping PTP packets at the MAC layer

• Packet delay is only estimated on request

• Synchronization through one packet from server to clients!

• Some newer hardware (1G Intel cards, 82580) can timestamp any packet

at the MAC layer

• Achieving skew of about 1 microsecond

Clock Synchronization in Computer Networks (PTP)

5/24

• Synchronous digital circuits require all components to act in sync

• The bigger the clock skew, the longer the clock period

• The clock signal that governs this rhythm needs to be distributed to all

components such that skew and wire length is minimized

• Optimize routing, insert buffers (also to improve signal)

Hardware Clock Distribution

10
15

20

15

9

20
20

20

20

20

12 20

5/25

• Reference Broadcast Synchronization (RBS) 

Synchronizing atomic clocks

• Sender synchronizes set of clocks

• Time-sync Protocol for Sensor Networks (TPSN) 

Network Time Protocol

• Estimating round trip time to sync more accurately

• Flooding Time Synchronization Protocol

(FTSP)Precision Time Protocol

• Timestamp packets at the MAC Layer to improve

accuracy

Clock Synchronization Tricks in Wireless Networks

1

A

0

1

2 2

B

2

�ଷ �ସ
�ଵ

�ଶ

A

B
S

Θ

�ଶ

tଵ

4

6

1

2 3

5

7

0

5/26

Best tree for tree-based clock synchronization?

• Finding a good tree for clock synchronization is a tough problem

– Spanning tree with small (maximum or average) stretch.

• Example: Grid network, with n = m2 nodes.

• No matter what tree you use, the maximum

stretch of the spanning tree will always be

at least m (just try on the grid).

• In general, finding the minimum max

stretch spanning tree is a hard problem,

however approximation algorithms exist.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

5/27

 Synchronize with all neighboring

nodes

• Broadcast periodic time beacons,

e.g., every 30 s

• No reference node necessary

 How to synchronize clocks without

having a leader?

• Follow the node with the

fastest/slowest clock?

• Idea: Go to the average clock

value/rate of all neighbors (including

node itself)

Clock Synchronization Tricks (GTSP)

4

6

1

2 3

5

7

0

5/28

Variants of Clock Synchronization Algorithms

 Tree-like Algorithms Distributed Algorithms

 e.g. FTSP e.g. GTSP

Bad local
skew

All nodes consistently average
errors to all neigbhors

5/29

FTSP vs. GTSP: Global Skew

• Network synchronization error (global skew)

– Pair-wise synchronization error between any two nodes in the network

FTSP (avg: 7.7 μs) GTSP (avg: 14.0 μs)

5/30

FTSP vs. GTSP: Local Skew

• Neighbor Synchronization error (local skew)

– Pair-wise synchronization error between neighboring nodes

• Synchronization error between two direct neighbors:

FTSP (avg: 15.0 μs) GTSP (avg: 2.8 μs)

5/31

Global vs. Local Time Synchronization

• Common time is essential for many applications:

– Assigning a timestamp to a globally sensed event (e.g. earthquake)

– Precise event localization (e.g. shooter detection, multiplayer games)

– TDMA-based MAC layer in wireless networks

– Coordination of wake-up and sleeping times (energy efficiency)

5/32

• Given a communication network

1. Each node equipped with hardware clock with drift

2. Message delays with jitter

• Goal: “ǇŶĐhroŶize CloĐks ;͞LogiĐal CloĐks͟Ϳ
• Both global and local synchronization!

Theory of Clock Synchronization

worst-case (but constant)

5/33

• Time (logical clocks) should not be allowed to stand still or jump

• Let͛s ďe ŵore Đareful ;aŶd aŵďitiousͿ:
• Logical clocks should always move forward

• Sometimes faster, sometimes slower is OK.

• But there should be a minimum and a maximum speed.

• As close to correct time as possible!

Time Must Behave!

5/34

Formal Model

• Hardware clock Hv(t) = s[0,t] hv(¿) d¿

with clock rate hv(t) 2 [1-²,1+²]

• Logical clock Lv(∙) which increases

at rate at least 1 and at most ¯

• Message delays 2 [0,1]

• Employ a synchronization algorithm

to update the logical clock according

to hardware clock and

messages from

neighbors

Clock drift ² is typically small, e.g.

² ¼10-4 for a cheap quartz oscillator

Neglect fixed share of delay,

normalize jitter

Logical clocks with rate less than 1

ďehaǀe differeŶtlǇ ;͞sǇŶĐhroŶizer͟Ϳ

Time is 140 Time is 150

Time is 152

Lv?

Hv

5/35

Synchronization Algorithŵs: AŶ Eǆaŵple ;͞Amax͟Ϳ

• Question: How to update the logical clock

based on the messages from the neighbors?

• Idea: Minimizing the skew to the fastest neighbor

– Set the clock to the maximum clock value received from any neighbor

(if larger than local clock value)

– forward new values immediately

• Optimum global skew of about D

• Poor local property

– First all ŵessages take ϭ tiŵe uŶit…

– …theŶ ǁe haǀe a fast ŵessage!

Time is D+x Time is D+x

…

Clock value:

D+x

Old clock value:

D+x-1
Old clock value:

x+1

Old clock value:

x

Time is D+x

New time is D+x
New time is D+x skew D!

Allow ¯ = 1

Fastest

Hardware

Clock

5/36

Synchronization Algorithms: Amax’

• The problem of Amax is that the clock is always increased to the maximum

value

• Idea: Allow a constant slack γ between the maximum neighbor clock value

and the own clock value

• The algorithm Amax’ sets the local clock value Li(t) to �௜ � ≔ max⁡ሺ�௜ � ,max௝∈���௝ � − ⁡ሻߛ

→ Worst-case clock skew between two neighboring nodes is still Θ;DͿ
independent of the choice of γ!

• How can we do better?

– Adjust logical clock speeds to catch up with fastest node (i.e. no jump)?

– Idea: Take the clock of all neighbors into account by choosing the average

value?

5/37

Local Skew: Overview of Results

1 logD √D D …

EǀerǇďodǇ͚s expectation,
five years ago ;„solved͞Ϳ

Lower bound of logD / loglogD

[Fan & Lynch, PODC 2004]

All natural algorithms
[Locher et al., DISC 2006]

Blocking
algorithm

Kappa algorithm
[Lenzen et al., FOCS 2008]

Tight lower bound
[Lenzen et al., PODC 2009]

Dynamic Networks!
[Kuhn et al., SPAA 2009]

5/38

Enforcing Clock Skew

• Messages between two neighboring nodes may be fast in one direction

and slow in the other, or vice versa.

• A constant skew between neighbors may be „hiddeŶ͞.

• In a path, the global skew may be in the order of D/2.

2 3 4 5 6 7

2 3 4 5 6 7

2 3 4 5 6 7

2 3 4 5 6 7

2 3 4 5 6 7

2 3 4 5 6 7

u

v

5/39

Local Skew: Lower Bound

Theorem: (logβ−భ � D) skew between neighbors

• Add
�బ ଶ skew in

�బ ଶ� ⁡time, messing with clock rates and messages

• Afterwards: Continue execution for
�బ ସሺ�−ଵሻ ⁡⁡time (all ℎ௫ = ͳ)

 Skew reduces by at most
�బ ସ  at least

�బ ସ skew remains

 Consider a subpath of length �ଵ = �଴ ⋅ � ଶ �−ଵ ⁡with at least
�భ ସ skew

 Add
�భ ଶ skew in

�భ ଶ� = �బ ସሺ�−ଵሻ time  at least ଷ ସ ⋅ �ଵ⁡skew in subpath

• Repeat this trick (+½,-¼,+½,-¼,…Ϳ logమሺβ−భሻ � D times

Higher

clock

rates

�଴ = �

ℎ௩ = ͳ

ℎ௪ = ͳ �௪ሺ�ሻ

�௩ሺ�ሻ=x

ℎ௪ = ͳ �௪ሺ�ሻ

�௩ � = � + �଴ ʹ ℎ௩ = ͳ + �

5/40

Local Skew: Upper Bound

• Surprisingly, up to small constants, the (log(¯-1)/² D) lower bound can be

matched with clock rates 2 [1,¯] (tough part, not included)

• We get the following picture [Lenzen et al., PODC 2009]:

• In practice, we usually have 1/² ¼ 104 > D. In other words, our initial

intuition of a constant local skew was not entirely wrong! 

max rate ¯ 1+² 1+£(²) ϭ+√² 2 large

local skew 1 £(log D) £(log1/² D) £(log1/² D) £(log1/² D)

... because too large
clock rates will amplify

the clock drift ².

We can have both
smooth and accurate

clocks!

5/41

 Sending periodic beacon messages to synchronize nodes

Back to Practice: Synchronizing Nodes

J

t=100 t=130

Beacon interval B

1

0

J

reference clock t

t

100 130

jitter jitter

5/42

 Message delay jitter affects clock synchronization quality

How accurately can we synchronize two nodes?

y(x) = r∙ǆ + ∆Ǉ

clock offset

^

relative clock rate

(estimated)

0

1

x

y

J J ∆Ǉ

Beacon interval B

r ̂

r
r ̂

5/43

 Lower Bound on the clock skew between two neighbors

Clock Skew between two Nodes

Error in the rate estimation:

 Jitter in the message delay

 Beacon interval

 Number of beacons k

Synchronization error:

0

1

x

y

J J ∆Ǉ

Beacon interval B

r ̂

r
r ̂

5/44

 Nodes forward their current estimate of the reference clock

Each synchronization beacon is affected by a random jitter J

 Sum of the jitter grows with the square-root of the distance

 stddev(J1 + J2 + J3 + J4 + J5 + ... Jd) = √d×stddev(J)

Multi-hop Clock Synchronization

J1 J2 J3

0 1 2 3 4 ...

J4 J5

d

Single-hop: Multi-hop:

Jd

5/45

 FTSP uses linear regression to compensate for clock drift

Jitter is amplified before it is sent to the next hop

Linear Regression (e.g. FTSP)

0

1

x

y

r

J J

∆Ǉ

Beacon interval B

Example for k=2

^

r

synchronization error

y(x) = r∙ǆ + ∆Ǉ

clock offset

^

relative clock rate

(estimated)

5/46

The PulseSync Protocol

• Send fast synchronization pulses through the network

 Speed-up the initialization phase

 Faster adaptation to changes in temperature or network topology

Beacon time B

t

0

1

2

3

4

t

0

1

2

3

4

FTSP

PulseSync

Expected time

= D·B/2

Expected time

= D·tpulse

tpulse

Beacon time B

5/47

The PulseSync Protocol (2)

• Remove self-amplification of synchronization error

 Fast flooding cannot completely eliminate amplification

synchronization error

^

The green line is calculated using

k measurement points that are

statistically independent of the red line.

0

1

x

y

r

J J

∆Ǉ

Beacon interval B

Example for k=2

^

r

y(x) = r∙ǆ + ∆Ǉ

clock offset

relative clock rate

(estimated)

5/48

FTSP vs. PulseSync

• Global Clock Skew

• Maximum synchronization error between any two nodes

Synchronization Error FTSP PulseSync

Average (t>2000s) 23.96 µs 4.44 µs

Maximum (t>2000s) 249 µs 38 µs

FTSP PulseSync

5/49

FTSP vs. PulseSync

• Sychnronization Error vs. distance from root node

FTSP PulseSync

5/50

Credits

• The Network Time Protocol was originally designed by David L. Mills,

1985.

• The Precision Time Protocol standard was defined by an IEEE working

group for precise networked clock synchronization under John Eidson,

2002.

• The Reference Broadcast Synchronization scheme was first introduced by

Jeremy Elson, Lewis Girod and Deborah Estrin, 2002.

• The Flooding Time Synchronization Protocol is due to Miklos Maroti et al.,

2004.

• TPSN is due Saurabh Ganeriwal et al., 2003.

• GTSP is due Philipp Sommer et al., 2009.

• Local skew results by Fan & Lynch, Lenzen, Locher, Kuhn, et al.

• Approximation algorithms for minimum max stretch spanning tree, e.g.

Emek and Peleg, 2004.

• PulseSync was proposed by Lenzen et al., 2009.

5/51 ETH Zurich – Distributed Computing – www.disco.ethz.ch

Roger Wattenhofer

That’s all!
Questions & Comments?

